Trends in *p*-adic Function Theory

William Cherry University of North Texas

> Dalat University July 2017

Definition (p-adic absolute value $| \cdot |_p$)

Let p be a prime number, let x be a rational number, and define

$$|x|_p = \left\{ \begin{array}{ll} 0 & \text{if } x = 0 \\ p^{-n} & \text{if } x = p^n \frac{a}{b}, \text{where } a \text{ and } b \text{ are integers with } p \not\mid ab. \end{array} \right.$$

Examples

•
$$|12|_2 = \frac{1}{4}$$
; • $\left|\frac{7}{375}\right|_7 = \frac{1}{7}$; • $\left|\frac{7}{375}\right|_5 = 125$; • $\left|\frac{7}{375}\right|_{11} = 1$.

Proposition '

The p-adic absolute value $| \ |_p$ satisfies the following properties:

AV 1 $|x|_p$ is a non-negative real number and $|x|_p = 0$ if and only if x = 0;

AV 2
$$|xy|_p = |x|_p \cdot |y|_p$$
.

AV 3
$$|x+y|_p \le \max\{|x|_p, |y|_p\} \le |x|_p + |y|_p$$
 (non-Archimedean)

p-adic numbers

- The completion of the rational numbers \mathbf{Q} with respect to the p-adic absolute value is called the field of p-adic numbers and is denoted \mathbf{Q}_p .
 - The field \mathbf{Q}_p is a complete locally compact field, somewhat analogous to the field of real numbers.
 - The topology on \mathbf{Q}_p induced by $| \cdot |_p$ is totally disconnected.
 - The *p*-adic numbers were created by Hensel. **Hensel's lemma** extend's Newton's method to the *p*-adic numbers and transforms the question of whether a polynomial with integer coefficients has a zero in the *p*-adic numbers into a question about whether the polynomial has a zero modulo a large enough power of *p*.
 - A classical question in number theory is when does a quadratic form in several variables and with integer coefficients have a non-trivial rational zero? For instance, are there rational numbers (x, y, z) such that

$$x^2 + y^2 + 13xy - 107xz + 46yz = 0$$
?

A theorem of **Minkowski** says that a quadratic form with rational coefficients has a non-trivial rational zero if and only if it has a non-trivial real zero and also a non-trivial *p*-adic zero for all *p*. This was extended to any number field by **Hasse**, and since then the *p*-adic numbers have been of great interest to number theorists. See Serre's *A Course in Arithmetic* for a nice introduction to this subject.

p-adic complex numbers

• Let C_p denote the completion of the algebraic closure of Q_p . The field C_p is called the *p*-adic complex numbers.

Proposition

The field \mathbf{C}_p is algebraically closed.

Remark

The field C_p is **not** locally compact, and therefore there is no Ascoli-Arzela type theorem for functions on C_p .

Residue Class Field

• By multiplicativity and the non-Archimedean triangle inequality, the set

$$\mathcal{O}_{\mathsf{C}_p} = \{ z \in \mathsf{C}_p : |z|_p \le 1 \}$$

forms a subring of C_p , called the ring of integers of C_p .

Similarly, one sees that the set

$$\mathfrak{m}_{\mathbf{C}_p} = \{ z \in \mathbf{C}_p : |z|_p < 1 \}$$

forms a maximal ideal in $\mathcal{O}_{\mathbf{C}_p}$, and in fact the unique maximal ideal in $\mathcal{O}_{\mathbf{C}_p}$.

- The field $\mathcal{O}_{\mathbf{C}_p}/\mathfrak{m}_{\mathbf{C}_p}$ is called the **residue class field,** and in this case it is easy to see that it is isomorphic to \mathbf{F}_p^a , the algebraic closure of the finite field of p elements.
- If z is in $\mathcal{O}_{\mathbf{C}_p}$, then we denote by \tilde{z} the image of z in the residue class field \mathbf{F}_p^a .

Remark

- It is not so important to work with exactly the field \mathbf{C}_p .
- This is just one of many complete algebraically closed non-Archimedean fields.
- I am using C_p in my lecture today to give a concrete example.
- Much of what I am discussing today remains true for any non-Archimedean field which is complete and algebraically closed.
- In some cases it is also important that C_p has characteristic zero, i.e., contains the rational numbers Q.
- Note, however, that \mathbf{C}_p has positive characteristic p, and so the residue class field need not have characteristic zero.

Remark

A series $\sum_{k=0}^{\infty} a_k$ converges in \mathbf{C}_p if and only if $\lim_{k\to\infty} |a_k|_p = 0$.

Entire and Meromorphic Functions

Definition

By an **entire** function f on C_p , we mean simply a formal power series

$$f(z) = \sum_{k=0}^{\infty} a_k z^k,$$

with coefficients a_k in \mathbf{C}_p and with infinite radius of convergence.

A **meromorphic** function f is the quotient $f = f_1/f_0$ of two entire functions f_0 and f_1 with the denominator f_0 not the zero function.

A Laurent series

$$f(z) = \sum_{k=-\infty}^{\infty} a_k z^k$$

is said to be **analytic** on $r_1 < |z| \le r_2$ if it converges for all such z.

Maximum Modulus Principle

Let $f(z) = \sum a_k z^k$ be an entire function and let r > 0 be a positive real number.

Definition

$$|f|_r = \max_k |a_k|_p r^k.$$

If $|c|_p \leq r$, then the non-Archimedean triangle inequality immediately implies

$$|f(c)|_p \le \max_k |a_k|_p |c|_p^k \le \max_k |a_k|_p r^k = |f|_r.$$

Proposition (Maximum Modulus)

Let r = |b| > 0. There exists a non-zero polynomial P(z) in $\mathbf{F}_p^a[z]$ such that for all z in

$$\mathbf{C}_p$$
 with $|z|_p \leq r$, we have

$$|f(z)|_p=|f|_r,$$

unless $\left(\frac{z}{b}\right)$ is a root of P.

Proof of Maximum Modulus Principle

Proof.

- Choose c such that $|c|_p = \max_k |a_k b^k|_p = \max_k |a_k|_p r^k = |f|_r$.
- Suppose $|z|_p \le r$ and that $|f(z)|_p < |f|_r = |c|_p$.
- This precisely means $\left| \sum_{k} \frac{a_k}{c} z^k \right|_p < 1.$
- Hence, $\left| \sum_{k} \frac{a_{k}}{c} b^{k} \left(\frac{z}{b} \right)^{k} \right|_{p} < 1.$
- Since $a_k b^k/c$ are elements of $\mathcal{O}_{\mathbf{C}_p}$, this exactly means $\sum_k \left(\frac{a_k b^k}{c}\right) \widetilde{\left(\frac{z}{b}\right)} = 0$, and

at least one but only finitely many $\left(\frac{a_k b^k}{c}\right) \neq 0$.

A consequence of the Maximum Modulus Principle

Corollary

If g and h are entire and r > 0, then

$$|gh|_r = |g|_r |h|_r$$
.

Proof.

If there exists $b \in \mathbf{C}_p$ with $|b|_p = r$, then by the Maximum Modulus Principle, there exists c in \mathbf{C}_p such that

$$|gh|_r = |g(c)h(c)|_p = |g(c)|_p |h(c)|_p = |g|_r |h|_r.$$

We can therefore extend $| \cdot |_r$ to meromorphic functions $f = f_1/f_0$ by

$$|f|_r = \frac{|f_1|_r}{|f_0|_r}$$

The Valuation Polygon

Again, let $f(z) = \sum a_k z^k$. If there exists k_0 such that $|a_k|_p r^k < |a_{k_0}|_p r^{k_0}$ for all $k \neq k_0$, and if |z| = r, then by the non-Archimedean triangle inequality

$$\left| \sum_{k \neq k_0} a_k z^k \right|_{p} < \left| a_{k_0} z^{k_0} \right|_{p},$$

and so, again by the non-Archimedean triangle inequality, $|f(z)|_p = |f|_r$. Thus, if f(z) = 0, then for r = |z|, the number of indices k such that $|a_k|_p r^k = |f|_r$ is at least two. Such values of r are called **critical points**.

The Valuation Polygon

Proposition (Theory of Newton or Valuation Polygons)

Let $f(z) = \sum_{k} a_k z^k$ be an entire function, and let

$$k(f,r) = k(r) = \min\{k : |a_k|_p r^k = |f|_r\} \text{ and } K(f,r) = K(r) = \max\{k : |a_k|_p r^k = |f|_r\}.$$

Then, f has precisely K(r) - k(r) zeros, counting multiplicity, with modulus r. Moreover, the set of r such that K(r) > k(r) is discrete.

The Valuation Polygon

An Example of a Valuation Polygon

Let $P(z) = (z-a)^n(z-b)^m$ with $|a|_p < |b|_p$. The following is the graph of $\log |P|_r$ as a function of $\log r$.

Consequences of Valuation Polygons: Picard Theorems

Corollary (Picard Theorems)

- A non-constant entire function takes on **every** value in C_p .
- A transcendental entire function takes on every value in C_p infinitely often.
- A function analytic in $0 < |z| \le 1$ with an essential singularity at the origin takes on every value in \mathbf{C}_p infinitely often.

Proof Sketch.

Let c be in \mathbf{C}_p and consider the series expansion for f(z)-c. Take r>0 and suppose K(f-c,r)=k(f-c,r); call this k. Let j be an adjacent index such that $a_j\neq 0$. Solving

$$|a_k|_p r^k = |a_j|_p r^j$$

locates an r where K(r) > k(r), and hence a zero of f(z) - c.

Consequences of Valuation Polygons: Riemann Mapping Theorem

Corollary (Riemann Mapping)

The image of a disc under an entire (or analytic) map is again a disc.

Proof Sketch.

- Let f be a non-constant analytic function in $|z| \leq 1$.
- Suppose f(0) = 0.
- Let c be an element of \mathbf{C}_p .
 - If $|c|_p > |f|_1$, then k(f c, r) = K(f c, r) = 0 for all $r \le 1$, so c is not in the image of f.
 - If $0 < |c|_p \le |f|_1$,
 - for r close to zero, $|f-c|_r=|c|_\rho$ and k(f-c,r)=K(f-c,r)=0.
 - For r = 1, we have $|f c|_1 = |f|_1 \ge |c|_p$.

Hence K(f - c, 1) > 0, and so for some $r \le 1$, we have k(r) < K(r).

Consequences of Valuation Polygon: Jensen Formula

Definition

$$N(f, 0, r) = \operatorname{ord}_{0}^{+} f \log r + \sum_{z \neq 0} \operatorname{ord}_{z}^{+} f \log \frac{r}{|z|_{p}}$$

Proposition (Jensen Formula)

If f is a non-constant entire function, then as $r \to \infty$,

$$N(f, 0, r) = \log |f|_r + O(1).$$

Nev

Logarithmic Derivative Lemma

Proposition (Logarithmic Derivative Lemma)

If f is meromorphic, $\left| \frac{f'}{f} \right|_{r} \leq \frac{1}{r}$.

Proof Sketch.

In the entire case, write $f(z) = \sum_{k=0}^{\infty} a_k z^k$.

$$f'(z) = \sum_{k=1}^{\infty} k a_k z^{k-1}.$$

•
$$|ka_k|_p r^{k-1} \le \frac{|a_k|_p r^k}{r}$$
 since $|k|_p \le 1$.

$$\bullet \Rightarrow |f'|_r \leq \frac{|f|_r}{r}$$
.

Nev

Logarithmic Derivative Lemma

Proposition (Logarithmic Derivative Lemma)

If f is meromorphic, $\left| \frac{f'}{f} \right|_r \leq \frac{1}{r}$.

Corollary (Picard's Theorem)

If an entire function f is zero-free, then f is constant.

Proof.

If f is zero-free, then f'/f is entire. But,

$$\left| \frac{f'}{f} \right|_r \le \frac{1}{r} \to 0 \text{ as } r \to \infty,$$

and so $f'/f \equiv 0$, meaning f must be constant.

Value Sharing

Theorem (Value Sharing [Adams & Straus])

Let $f = f_1/f_0$ and $g = g_1/g_0$ be a meromorphic function and let c_1, \ldots, c_4 be four values in \mathbf{C}_p . If $f^{-1}(c_j) = g^{-1}(c_j)$ for $j = 1, \ldots, 4$, then either both f and g are constant or f = g.

Proof Sketch.

- Assume $\max\{|g_0|_r, |g_1|_r\} \leq \max\{|f_0|_r, |f_1|_r\}$ for a sequence of $r \to \infty$.
- Consider the **entire** function $h = \frac{(f_1g_0 f_0g_1)(f_0f_1' f_1f_0')}{(f_1 c_1f_0)(f_1 c_2f_0)(f_1 c_3f_0)(f_1 c_4f_0)}$.
- $|f_1 c_i f_0|_r \ge \max\{1, |c_i|_p\} \max\{|f_0|_r, |f_1|_r\}$ for r large.
- $|f_1g_0 f_0g_1|_r < (\max\{|f_0|_r, |f_1|_r\})^2$.
- $\bullet |f_0f_1' f_1f_0'|_r = |f_0f_1|_r \left| \frac{f_1'}{f_1} \frac{f_0'}{f_0} \right|_r \le (\max\{|f_0|_r, |f_1|_r\})^2 \frac{1}{r}.$
- ullet $\Rightarrow |h|_r \leq rac{\mathrm{const}}{r}$ for a sequence of $r \to \infty$.

Maps to Varieties

Definition

A variety X is the set of solutions of a finte system of polynomial equations

$$P_j(X_0,\ldots,X_n)=0.$$

- If we find rational functions $(f_0(t), \ldots, f_n(t))$ such that $P_j(f_0, \ldots, f_n) = 0$, we can think of this as a mapping from \mathbf{P}^1 to X. We call this a **rational curve**.
- If we find complex entire functions (f_0, \ldots, f_n) such that $P_j(f_0, \ldots, f_n) = 0$, then we can think of this as a holomorphic map from \mathbf{C} to X, and we call this a **holomorphic curve**.
- If we find non-Archimedean entire functions (f_0, \ldots, f_n) such that $P_j(f_0, \ldots, f_n) = 0$, then we can think of this as an analytic map from \mathbf{A}^1 to X, and we call this a **non-Archimedean analytic curve.**

Picard for Hyperelliptic Curves

Let P(x) be a polynomial without repeated zeros. The variety defined by $y^2 = P(x)$ is called a **hyperelliptic curve**.

Proposition

If P(x) is a polynomial without repeated zeros of degree at least 3, then there do not exist non-constant non-Archimedean meromorphic functions g and h such that $g^2 = P(h)$.

Proof.

Consider the hyperelliptic curve C defined by $y^2 = P(x)$ and the differential $\omega = dx/y = 2dy/P'(x)$.

Since y and P'(x) do not simultaneously vanish and since deg $P \ge 3$, ω has no poles on C (including at points at infinity).

Hence a solution $g^2 = P(h)$ in meromorphic functions g and h thought of as a map f from \mathbf{A}^1 to C results in the pull-back $f^*\omega = \zeta(z)dz$, where ζ is analytic. Then,

$$|\zeta|_r = \left|\frac{h'}{g}\right|_r = \left|\frac{h'}{h}\right|_r \left|\frac{h}{g}\right| \le \frac{1}{r} \frac{|h|_r}{|g|_r}$$

by the logarithmic derivative lemma. On the other hand,

$$|\zeta|_r = \left|\frac{h'}{g}\right|_r = \left|\frac{2g}{P'(h)}\right|_r = |2|\frac{|g|_r}{|h|_r}\frac{|h|_r}{|P'(h)|_r}.$$

When $|h|_r$ is large, we can estimate $|P'(h)|_r$ from below by $|h|_r^2$, and so we see $|\zeta|_r \to 0$ as $r \to \infty$, and so f is constant.

Picard-type Theorems

Theorem (Berkovich Picard Theorem)

A non-Archimedean analytic map from \mathbf{A}^1 to an algebraic curve of genus at least one must be constant.

Theorem (Cherry's Thesis)

A non-Archimedean analytic map from A^1 to an Abelian variety must be constant.

Remark

This was later extended to semi-Abelian varieties in joint work with An and Wang.

Theorem (Cherry/Ru)

A non-Archimedean analytic map in characteristic zero from \mathbf{A}^1 to a non-singular variety X of dimension n admitting holomorphic or logarithmic one forms $\omega_1, \ldots, \omega_n$ such that $\omega_1 \wedge \cdots \wedge \omega_n \not\equiv 0$ must be constant.

Cherry Conjecture

Definition

A variety Z is called **rationally connected** if given any two $x, y \in Z$, x and z can be connected by a finite chain of rational curves.

Conjecture (Cherry)

Let $f: \mathbf{A}^1 \to X$ be a non-Archimedean analytic map to a non-singular projective variety X. Then, the image of f is contained in a rationally connected subvariety Z of X.

Remark

Perhaps the easiest case where this conjecture is not known is the case where X is a K3-surface. K3-surfaces contain infinitely many rational curves, so there is not a fixed proper subvariety containing the image of all non-constant non-Archimedean analytic curves.

Algebraic degeneracy

Theorem (An/Cherry/Wang)

Let Y be a possibly singular projective variety and let $\iota: Y \to X$ be a morphism to a smooth projective variety X. Let $\{D_i\}_{i=1}^\ell$ be ℓ irreducible effective divisors on X such that $\{\iota^*D_i\}_{i=1}^\ell$ have rank ℓ in the free Abelian group of divisors on Y. Assume that ℓ is larger than the rank of the subgroup generated by the $c_1(D_i)$ in $\mathrm{NS}(X)$. Then, any analytic map from \mathbf{A}^1 to Y is either algebraically degenerate or intersects the support of at least one of the ι^*D_i .

Example

Let f be an algebraically non-degenerate analytic map from \mathbf{A}^1 to \mathbf{A}^2 . Let X be obtained by blowing up r-1 general points in \mathbf{P}^2 , none of which are contained in the hyperplane H at infinity and which are also not contained in the image of f. Let $\{D_i\}_1^r$ consist of the r-1 exceptional divisors and the strict transform of H. Then, lifting f to X results in an algebraically non-degenerate map omitting r effective divisors.

Theorem (An/Cherry/Wang)

Let $\iota: Y \to X$ and $f: \mathbf{A}^1 \to Y$ be algebraically non-degenerate. Suppose $\{\iota^* D_i\}_{i=1}^\ell$ form a subgoup of rank $\ell > \operatorname{rk}\langle c_1(D_i)\rangle$ in the free Abelian group of Cartier divisors on Y. Then, f intersects some D_i .

Proof.

Let $f: \mathbf{A}^1 \to Y$ and lift to the normalization Y.

We can find integers a_i not all zero so that $\sum a_i c_1(D_i) = 0$. Thus, $\sum a_i \tilde{\iota}^* D_i$ is a non-zero divisor algebraically equivalent to zero on Y.

If there is a non-constant rational map from \widetilde{Y} to an Abelian variety, then f is already algebraically degenerate. Hence, assume $\operatorname{Pic}^0(\widetilde{Y})$ is trivial.

Find a non-constant rational function h on Y such that

$$\operatorname{div}(h) = \sum a_i \tilde{\iota}^* D_i.$$

If f omits the supports of all the ι^*D_i , then $h \circ f$ is an entire function without zeros, and hence constant.

Adding the assumption that the D_i are ample to the previous result, combining this with the result of Lin and Wang, and then fixing the argument in Noguchi Winkelmann gives:

Corollary

Let Y be a closed positive dimensional subvariety of a non-singular projective variety X. Let $\{D_i\}_{i=1}^\ell$ be ℓ irreducible, effective, ample divisors in general position on X. Let r be the rank of the subgroup of $\mathrm{NS}(X)$ generated by $\{c_1(D_i)\}_{i=1}^\ell$. If there exists an algebraically non-degenerate analytic map from \mathbf{F} to Y omitting each of the D_i that does not contain all of Y, then

$$\ell \leq \min\{r + \operatorname{codim} Y, \dim X\}.$$

Remark

- When $X = \mathbf{P}^n$, the above inequality was proven by An, Wang, and Wong.
- With the assumption that the components D_i are ample, I suspect a bound can be independent of r.