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Definition (p-adic absolute value | |p)

Let p be a prime number, let x be a rational number, and define

|x |p =

{
0 if x = 0
p−n if x = pn a

b ,where a and b are integers with p 6
∣∣ab.

Examples

|12|2 =
1

4
;

∣∣∣∣ 7

375

∣∣∣∣
7

=
1

7
;

∣∣∣∣ 7

375

∣∣∣∣
5

= 125;

∣∣∣∣ 7

375

∣∣∣∣
11

= 1.

Proposition

The p-adic absolute value | |p satisfies the following properties:

AV 1 |x |p is a non-negative real number and |x |p = 0 if and only if x = 0;

AV 2 |xy |p = |x |p · |y |p.
AV 3 |x + y |p ≤ max{|x |p, |y |p} ≤ |x |p + |y |p (non-Archimedean)
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p-adic numbers

The completion of the rational numbers Q with respect to the p-adic absolute
value is called the field of p-adic numbers and is denoted Qp.

The field Qp is a complete locally compact field, somewhat analogous to the field of
real numbers.
The topology on Qp induced by | |p is totally disconnected.
The p-adic numbers were created by Hensel. Hensel’s lemma extend’s Newton’s
method to the p-adic numbers and transforms the question of whether a polynomial
with integer coefficients has a zero in the p-adic numbers into a question about
whether the polynomial has a zero modulo a large enough power of p.
A classical question in number theory is when does a quadratic form in several
variables and with integer coefficients have a non-trivial rational zero? For instance,
are there rational numbers (x , y , z) such that

x2 + y2 + 13xy − 107xz + 46yz = 0?

A theorem of Minkowski says that a quadratic form with rational coefficients has a
non-trivial rational zero if and only if it has a non-trival real zero and also a
non-trivial p-adic zero for all p. This was extended to any number field by Hasse,
and since then the p-adic numbers have been of great interest to number theorists.
See Serre’s A Course in Arithmetic for a nice introduction to this subject.
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p-adic complex numbers

Let Cp denote the completion of the algebraic closure of Qp. The field Cp is
called the p-adic complex numbers.

Proposition

The field Cp is algebraically closed.

Remark

The field Cp is not locally compact, and therefore there is no Ascoli-Arzela type
theorem for functions on Cp.
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Residue Class Field

By multiplicativity and the non-Archimedean triangle inequality, the set

OCp = {z ∈ Cp : |z |p ≤ 1}

forms a subring of Cp, called the ring of integers of Cp.

Similarly, one sees that the set

mCp = {z ∈ Cp : |z |p < 1}

forms a maximal ideal in OCp , and in fact the unique maximal ideal in OCp .

The field OCp/mCp is called the residue class field, and in this case it is easy to
see that it is isomorphic to Fa

p, the algebraic closure of the finite field of p
elements.

If z is in OCp , then we denote by z̃ the image of z in the residue class field Fa
p.
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Remark

It is not so important to work with exactly the field Cp.

This is just one of many complete algebraically closed non-Archimedean fields.

I am using Cp in my lecture today to give a concrete example.

Much of what I am discussing today remains true for any non-Archimedean field
which is complete and algebraically closed.

In some cases it is also important that Cp has characteristic zero, i.e., contains
the rational numbers Q.

Note, however, that C̃p has positive characteristic p, and so the residue class field
need not have characteristic zero.

Remark

A series
∞∑
k=0

ak converges in Cp if and only if lim
k→∞

|ak |p = 0.
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Entire and Meromorphic Functions

Definition

By an entire function f on Cp, we mean simply a formal power series

f (z) =
∞∑
k=0

akz
k ,

with coefficients ak in Cp and with infinite radius of convergence.
A meromorphic function f is the quotient f = f1/f0 of two entire functions f0 and f1
with the denominator f0 not the zero function.
A Laurent series

f (z) =
∞∑

k=−∞
akz

k

is said to be analytic on r1 < |z | ≤ r2 if it converges for all such z .
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Maximum Modulus Principle

Let f (z) =
∑

akz
k be an entire function and let r > 0 be a positive real number.

Definition

|f |r = max
k
|ak |prk .

If |c |p ≤ r , then the non-Archimedean triangle inequality immediately implies

|f (c)|p ≤ max
k
|ak |p|c|kp ≤ max

k
|ak |prk = |f |r .

Proposition (Maximum Modulus)

Let r = |b| > 0. There exists a non-zero polynomial P(z) in Fa
p[z ] such that for all z in

Cp with |z |p ≤ r , we have
|f (z)|p = |f |r ,

unless
(̃z
b

)
is a root of P.
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Proof of Maximum Modulus Principle

Proof.

Choose c such that |c |p = max
k
|akbk |p = max

k
|ak |prk = |f |r .

Suppose |z |p ≤ r and that |f (z)|p < |f |r = |c |p.

This precisely means

∣∣∣∣∣∑
k

ak
c
zk

∣∣∣∣∣
p

< 1.

Hence,

∣∣∣∣∣∑
k

ak
c
bk
(z
b

)k ∣∣∣∣∣
p

< 1.

Since akb
k/c are elements of OCp , this exactly means

∑
k

˜(akbk

c

)(̃z
b

)
= 0, and

at least one but only finitely many
˜(akbk

c

)
6= 0.
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A consequence of the Maximum Modulus Principle

Corollary

If g and h are entire and r > 0, then

|gh|r = |g |r |h|r .

Proof.

If there exists b ∈ Cp with |b|p = r , then by the Maximum Modulus Principle, there
exists c in Cp such that

|gh|r = |g(c)h(c)|p = |g(c)|p|h(c)|p = |g |r |h|r .

We can therefore extend | |r to meromorphic functions f = f1/f0 by

|f |r =
|f1|r
|f0|r
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The Valuation Polygon

Again, let f (z) =
∑

akz
k . If there exists k0 such that |ak |prk < |ak0 |pr

k0 for all

k 6= k0, and if |z | = r , then by the non-Archimedean triangle inequality∣∣∣∣∣∣
∑
k 6=k0

akz
k

∣∣∣∣∣∣
p

<
∣∣∣ak0zk0∣∣∣

p
,

and so, again by the non-Archimedean triangle inequality, |f (z)|p = |f |r . Thus, if
f (z) = 0, then for r = |z |, the number of indices k such that |ak |prk = |f |r is at least
two. Such values of r are called critical points.
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The Valuation Polygon

Proposition (Theory of Newton or Valuation Polygons)

Let f (z) =
∑
k

akz
k be an entire function, and let

k(f , r) = k(r) = min{k : |ak |prk = |f |r} and K (f , r) = K (r) = max{k : |ak |prk = |f |r}.

Then, f has precisely K (r)− k(r) zeros, counting multiplicity, with modulus r .
Moreover, the set of r such that K (r) > k(r) is discrete.
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The Valuation Polygon

An Example of a Valuation Polygon

Let P(z) = (z − a)n(z − b)m with |a|p < |b|p. The following is the graph of log |P|r as
a function of log r .

log r

log |P |r

log |b|
log |a|
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Consequences of Valuation Polygons: Picard Theorems

Corollary (Picard Theorems)

A non-constant entire function takes on every value in Cp.

A transcendental entire function takes on every value in Cp infinitely often.

A function analytic in 0 < |z | ≤ 1 with an essential singularity at the origin takes
on every value in Cp infinitely often.

Proof Sketch.

Let c be in Cp and consider the series expansion for f (z)− c . Take r > 0 and suppose
K (f − c , r) = k(f − c , r); call this k . Let j be an adjacent index such that aj 6= 0.
Solving

|ak |prk = |aj |pr j

locates an r where K (r) > k(r), and hence a zero of f (z)− c.
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Consequences of Valuation Polygons: Riemann Mapping Theorem

Corollary (Riemann Mapping)

The image of a disc under an entire (or analytic) map is again a disc.

Proof Sketch.

Let f be a non-constant analytic function in |z | ≤ 1.

Suppose f (0) = 0.

Let c be an element of Cp.

If |c |p > |f |1, then k(f − c , r) = K (f − c , r) = 0 for all r ≤ 1, so c is not in the
image of f .
If 0 < |c |p ≤ |f |1,

for r close to zero, |f − c|r = |c|p and k(f − c, r) = K(f − c, r) = 0.
For r = 1, we have |f − c|1 = |f |1 ≥ |c|p.

Hence K (f − c , 1) > 0, and so for some r ≤ 1, we have k(r) < K (r).
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Consequences of Valuation Polygon: Jensen Formula

Definition

N(f , 0, r) = ord+0 f log r +
∑
z 6=0

ord+z f log
r

|z |p

Proposition (Jensen Formula)

If f is a non-constant entire function, then as r →∞,

N(f , 0, r) = log |f |r + O(1).
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Logarithmic Derivative Lemma

Proposition (Logarithmic Derivative Lemma)

If f is meromorphic,

∣∣∣∣ f ′f
∣∣∣∣
r

≤ 1

r
.

Proof Sketch.

In the entire case, write f (z) =
∞∑
k=0

akz
k .

f ′(z) =
∞∑
k=1

kakz
k−1.

|kak |prk−1 ≤
|ak |prk

r
since |k|p ≤ 1.

⇒ |f ′|r ≤
|f |r
r
.
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Logarithmic Derivative Lemma

Proposition (Logarithmic Derivative Lemma)

If f is meromorphic,

∣∣∣∣ f ′f
∣∣∣∣
r

≤ 1

r
.

Corollary (Picard’s Theorem)

If an entire function f is zero-free, then f is constant.

Proof.

If f is zero-free, then f ′/f is entire. But,∣∣∣∣ f ′f
∣∣∣∣
r

≤ 1

r
→ 0 as r →∞,

and so f ′/f ≡ 0, meaning f must be constant.
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Value Sharing

Theorem (Value Sharing [Adams & Straus])

Let f = f1/f0 and g = g1/g0 be a meromorphic function and let c1, . . . , c4 be four
values in Cp. If f −1(cj) = g−1(cj) for j = 1, . . . , 4, then either both f and g are
constant or f = g .

Proof Sketch.

Assume max{|g0|r , |g1|r} ≤ max{|f0|r , |f1|r} for a sequence of r →∞.

Consider the entire function h =
(f1g0 − f0g1)(f0f

′
1 − f1f

′
0)

(f1 − c1f0)(f1 − c2f0)(f1 − c3f0)(f1 − c4f0)
.

|f1 − cj f0|r ≥ max{1, |cj |p}max{|f0|r , |f1|r} for r large.

|f1g0 − f0g1|r ≤ (max{|f0|r , |f1|r})2 .

|f0f ′1 − f1f
′
0 |r = |f0f1|r

∣∣∣∣ f ′1f1 − f ′0
f0

∣∣∣∣
r

≤ (max{|f0|r , |f1|r})2
1

r
.

⇒ |h|r ≤
const

r
for a sequence of r →∞.
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Maps to Varieties

Definition

A variety X is the set of solutions of a finte system of polynomial equations

Pj(X0, . . . ,Xn) = 0.

If we find rational functions (f0(t), . . . , fn(t) such that Pj(f0, . . . , fn) = 0, we can
think of this as a mapping from P1 to X . We call this a rational curve.

If we find complex entire functions (f0, . . . , fn) such that Pj(f0, . . . , fn) = 0, then
we can think of this as a holomorphic map from C to X , and we call this a
holomorphic curve.

If we find non-Archimedean entire functions (f0, . . . , fn) such that
Pj(f0, . . . , fn) = 0, then we can think of this as an analytic map from A1 to X ,
and we call this a non-Archimedean analytic curve.
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Picard for Hyperelliptic Curves

Let P(x) be a polynomial without repeated zeros. The variety defined by y2 = P(x) is
called a hyperelliptic curve.

Proposition

If P(x) is a polynomial without repeated zeros of degree at least 3, then there do not
exist non-constant non-Archimedean meromorphic functions g and h such that
g2 = P(h).
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Proof.

Consider the hyperelliptic curve C defined by y2 = P(x) and the differential
ω = dx/y = 2dy/P ′(x).
Since y and P ′(x) do not simultaneously vanish and since degP ≥ 3, ω has no poles
on C (including at points at infinity).
Hence a solution g2 = P(h) in meromorphic functions g and h thought of as a map f
from A1 to C results in the pull-back f ∗ω = ζ(z)dz , where ζ is analytic. Then,

|ζ|r =

∣∣∣∣h′g
∣∣∣∣
r

=

∣∣∣∣h′h
∣∣∣∣
r

∣∣∣∣hg
∣∣∣∣ ≤ 1

r

|h|r
|g |r

by the logarithmic derivative lemma. On the other hand,

|ζ|r =

∣∣∣∣h′g
∣∣∣∣
r

=

∣∣∣∣ 2g

P ′(h)

∣∣∣∣
r

= |2| |g |r
|h|r

|h|r
|P ′(h)|r

.

When |h|r is large, we can estimate |P ′(h)|r from below by |h|2r , and so we see
|ζ|r → 0 as r →∞, and so f is constant.
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Picard-type Theorems

Theorem (Berkovich Picard Theorem)

A non-Archimedean analytic map from A1 to an algebraic curve of genus at least one
must be constant.

Theorem (Cherry’s Thesis)

A non-Archimedean analytic map from A1 to an Abelian variety must be constant.

Remark

This was later extended to semi-Abelian varieties in joint work with An and Wang.

Theorem (Cherry/Ru)

A non-Archimedean analytic map in characteristic zero from A1 to a non-singular
variety X of dimension n admiting holomorphic or logarithmic one forms ω1, . . . , ωn

such that ω1 ∧ · · · ∧ ωn 6≡ 0 must be constant.
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Cherry Conjecture

Definition

A variety Z is called rationally connected if given any two x , y ∈ Z , x and z can be
connected by a finite chain of rational curves.

Conjecture (Cherry)

Let f : A1 → X be a non-Archimedean analytic map to a non-singular projective variety
X . Then, the image of f is contained in a rationally connected subvariety Z of X .

Remark

Perhaps the easiest case where this conjecture is not known is the case where X is a
K3-surface. K3-surfaces contain infinitely many rational curves, so there is not a fixed
proper subvariety containing the image of all non-constant non-Archimedean analytic
curves.
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Algebraic degeneracy

Theorem (An/Cherry/Wang)

Let Y be a possibly singular projective variety and let ι : Y → X be a morphism to a
smooth projective variety X . Let {Di}`i=1 be ` irreducible effective divisors on X such
that {ι∗Di}`i=1 have rank ` in the free Abelian group of divisors on Y . Assume that ` is
larger than the rank of the subgroup generated by the c1(Di ) in NS(X ). Then, any
analytic map from A1 to Y is either algebraically degenerate or intersects the support
of at least one of the ι∗Di .

Example

Let f be an algebraically non-degenerate analytic map from A1 to A2. Let X be
obtained by blowing up r − 1 general points in P2, none of which are contained in the
hyperplane H at infinity and which are also not contained in the image of f . Let {Di}r1
consist of the r − 1 exceptional divisors and the strict transform of H. Then, lifting f
to X results in an algebraically non-degenerate map omitting r effective divisors.
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Theorem (An/Cherry/Wang)

Let ι : Y → X and f : A1 → Y be algebraically non-degenerate. Suppose {ι∗Di}`i=1

form a subgoup of rank ` > rk〈c1(Di )〉 in the free Abelian group of Cartier divisors on
Y . Then, f intersects some Di .

Proof.

Let f : A1 → Y and lift to the normalization Ỹ .
We can find integers ai not all zero so that

∑
aic1(Di ) = 0. Thus,

∑
ai ι̃
∗Di is a

non-zero divisor algebraically equivalent to zero on Ỹ .
If there is a non-constant rational map from Ỹ to an Abelian variety, then f is already
algebraically degenerate. Hence, assume Pic0(Ỹ ) is trivial.
Find a non-constant rational function h on Ỹ such that

div(h) =
∑

ai ι̃
∗Di .

If f omits the supports of all the ι∗Di , then h ◦ f is an entire function without zeros,
and hence constant.
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Adding the assumption that the Di are ample to the previous result, combining this
with the result of Lin and Wang, and then fixing the argument in Noguchi Winkelmann
gives:

Corollary

Let Y be a closed positive dimensional subvariety of a non-singular projective variety
X . Let {Di}`i=1 be ` irreducible, effective, ample divisors in general position on X . Let
r be the rank of the subgroup of NS(X ) generated by {c1(Di )}`i=1. If there exists an
algebraically non-degenerate analytic map from F to Y omitting each of the Di that
does not contain all of Y , then

` ≤ min{r + codimY , dimX}.

Remark

When X = Pn, the above inequality was proven by An, Wang, and Wong.

With the assumption that the components Di are ample, I suspect a bound can
be independent of r .
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